Biomolecules

What are Biomolecules?

- _____ compounds made by living things
- Also called biochemicals or biological molecules
- Vary in size
- Based on the most important element in living organisms... !

What makes carbon so special?

- Carbon has valence electrons
- That means it can form 4 covalent
- It bonds with itself over and over to form giant carbon chains called carbon

Four Biomolecule Categories

- 1.
 - Sugar
 - Starch
 - Cellulose
- 2.
- Fats
 - Oils
- 3.
- Made of amino acids
- Vitamins & Minerals
- 4.
- DNA
- RNA

1) Carbohydrates The ______ biomolecules Made of only 3 elements: ______ The word carbohydrate comes from the fact that these compounds have matching

- carbon atoms bonded to _____ (OH) groups.
- Serve 2 main functions:
 - Source of chemical ______ for cells in many living thing:
- Part of the _____ material of plants Come in all sizes, from small rings to long chains

Two Types of Carbohydrates 1) Carbohydrates

Sugar

1pt

ec

- Break down _____ in the body Provide a quick burst of energy or a "sugar rush"
- is the most important & simplest sugar on Earth.
 - Used in cells & created by photosynthesis
 - It comes in many forms
- Examples:

2)

Carbohydrates

Starch

Long ______ of simpler sugars joined together These big molecules are called

_____, polysaccharides or _____

- to break down in the body & provide energy for
- a longer period of time than regular sugars.
- Examples: ٠

Cellulose

- Unlike animal cells, _____ cells have a cell wall made of cellulos
 - The cell wall is a large part of vegetables such as lettuce & celery.
 - It also is what gives stems & wood strength.
- Ceullose is made from chains of thousands of glucose molecules, but the difference is in how they're linked.
- Because of this small difference, your body digest cellulose the same way it can starches & sugars.

2) Lipids

- Mostly made of carbon, hydrogen, and oxygen.
- More complex & take much longer to break down.
 - So, fats are _____ molecules that plants and animals use to store energy in reserves for longer periods.
- Plants store energy in ______, like olive, corn, or peanut oil. An oil is a fat that is ______ at room temperature.

Structure

- Fats & oils store energy super-efficiently; 1 gram of fat contains about the energy as 1 gram of carbohydrate.
- A fat molecule has a 2-part structure.
- The first part is called _____. Attached to glycerol are 3 long chains called _____.

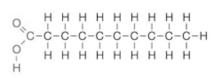
Saturated and Unsaturated Fats

Saturated fats

- only bonds in the carbon chain
- Most fats
- "bad" fats
- Diets high in saturated fat are linked to heart disease

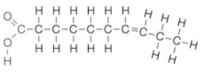
Unsaturated fats

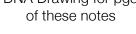
- one or more ______ bonds in the carbon chain
- Most oils from
- "good" fats

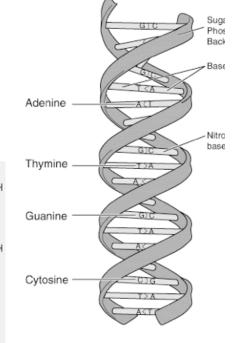

Cholesterol

- Another lipid in cell membranes
- It is also needed to make like adrenaline
- Your body makes the cholesterol that it needs, but it is also found in many foods that come from animals, like meat and eggs.
- Although you need cholesterol, eating too much of it can block arteries and lead to heart disease.

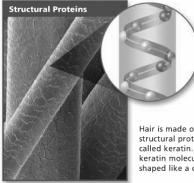
Carbohydrates & Fat

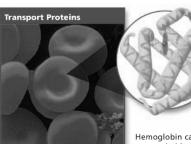

- 1. Carbohydrates, stored in the liver & muscles, are converted into what?
- 2. How many hours of energy does the average person have stored?
- Converting fat to fuel requires what? 3.
- Think about it. How did our ancient ancestors affect the way our bodies work toda 4.


Saturated & Unsaturated Fats Saturated



DNA Drawing for pg3 of these notes





3) Proteins

- Proteins are big molecules called ______
- Made of smaller molecules called
- Made of carbon, hydrogen, oxygen, nitrogen, sulfur, & some other elements
- There are at least _____ proteins in your body
- Each has a different that gives it a specific .
- There are types of structure, including coils & curls.

Hair is made of a structural protein called keratin. The keratin molecule is shaped like a coil.

Hemoglobin carries oxygen in blood. The protein myoglobin, shown above, stores oxygen for muscles to use

Amino Acids

- Think of proteins as being like a word. Amino acids are the letters in that word. Rearranging the letters makes words with different meanings.
- There are amino acids required for human life to exist. amino acids are made in our bodies, but the other must be obtained by eating that contain them.

Enzymes

- Some proteins curl up into a shape like a ball of enzymes.
- An enzyme is a special protein & a _____ for a chemical reaction in living things.
- Catalysts speed up the rate of a reaction.
- Enzymes are needed for many chemical reactions in your body.
- Without them, these reactions would occur too slowly to keep you alive.

Proteins in the Diet

- It's important to have lots of protein in your diet!
- Proteins in foods such as _____, ____, & _____, &

- Without protein, your body can't function perfectly...
- This is why it's important for vegetarians to find protein from non-animal sources.

Vitamins

Most of the chemicals needed for life can by made by your own body, like proteins. However, there are certain chemicals that your body does not

automatically make. We call these vitamins & _____. Important daily vitamins & minerals include calcium, Vitamin A, C, D, and a whole bunch of B vitamins. The only place to get these: food!! Vitamin C

is needed for several important processes in your brain & nervous system. _____ results from a lack of vitamin C in your diet. It causes of spotting on the skin, spongy gums, and bleeding membranes, and can eventually lead to death. The British Royal Navy were among the first to discover this vitamin deficiency, when they noticed their sailors would get sick without fresh fruits & vegetables.

4) Nucleic Acids

- The largest & most complex biomolecule Includes: &_____
- Contain information that cells use to make proteins
- Made of: Carbon, Hydrogen, Oxygen, Nitrogen •

Protein Synthesis

- Every cell in your body has a complete set of nucleic acids.
- The process of making proteins from amino acids is called
- How does protein synthesis work? DNA!

DNA

- Stands for deoxyribonucleic acid One of the largest molecules •
- A single DNA molecule has more than atoms.

Structure

- Twisted ladder or _____ The sides of the ladder are made of: •
 - o _____ molecules called deoxyribose
- o group The "rungs" of the ladder are made of _____

4 Nitrogen Bases

Occur in matched sets:

- (A) to (T)
 (C) to (G)
 (C) to the way in which DNA stores instruction • for making proteins.
- Each of the 20 amino acids is represented by a series of DNA bases.
- For example, the sequence T-A-C is the code for the amino acid tyrosine. •

	Table 2	Fu	nctional Gro	oups			
	Suffix Type of Com		pound Functional Group		up E	Examples	
	-01	alcohol					
	-oic	carboxylic a	acid				
	-amine	amine					
Use these as functional groups Use these as examples							
	-N <h Amino group</h 	-0-н Hydroxyl group	Carboxyl grou	н-с-с-о-н н о p Ethanoic acid	H-C-C-NCH H-H Ethamine	нн н-с-с-о-н нн Ethanol	
	Plac	ce the numbe	r of the word	l in front of its o	correct defin	nition	
1	Amino acid		a member of a building block	class of organic c s of proteins	ompounds the	at are the basic	
2	Nucleic acid		the total mass	of all living matter	,		
3	Biomass		a large organic molecule found in living organisms, which includes lipids, proteins, carbohydrates, and nucleic acids				
- 4	Organic con	npound	an organic cor	mpound used by c	ells to store a	nd release energy	
5	Hydrocarbo	ns	a group of ato compounds	ms that replaces a	hydrogen ato	m in organic	
6	Biomolecule	2	molecules that	t contain only carb	on and hydro	gen atoms	
7	Functional g	group		ompound, including er and it contains o			
8	Carbohydra	te		t shares electrons	equally and d	loes not have	
9	Lipid	oppositely charged ends a biomolecule, such as RNA and DNA that stores cellular					
10	Nonpolar m	olecule	information in	cells in all plants a	and animals		
	1	Draw a line to	- match tha t	arm with its oor	root dofiniti		
Sat	urated Hyd		b match the term with its correct definition: Each carbon atom in the molecule shares a single bond with each of 4 other atoms. Also called alkanes				
Unsaturated Hydrocarbon			Based on benzene and often have strong odors				
Aromatic Hydrocarbon			Contains at least 2 carbon atoms that share a double or triple bond. Also called alkenes or alkynes				

Use pgs 408-411 & pg3 in the additional reading to complete the table below

Draw the	Definition	Additional	examples
functional group		info	
Carbohydrates			
Lipids (Fats)			
Lipius (Paus)			
Proteins			
Nucleic Acids			
		1	I